锦浪三相五代组串式光伏逆变器

K

GINLONG

G5-GC(50-70)K-PRO 使用说明书

Ver 1.0

锦浪科技股份有限公司
地址:浙江省宁波市象山县滨海工业园金通路57号,315712
服务热线: 400-101-6600
销售热线: +86 (0)574 6580 3887
传真: +86 (0)574 6578 1606
邮箱: info@ginlong.com
公司网站: www.ginlong.com
注意: 如果说明书与实物有出入,请以实物为准。

当您发生问题时,请将您使用逆变器的产品序列号告知我们。我们将尽快给您答复!

锦浪科技股份有限公司

1.	介绍		4
	1.1	产品描述	4
	1.2	包装清单	5
	1.3	存储	6
2.	安全指令		7
	2.1	安全标志	7
	2.2	2 一般安全说明	7
	2.3	9 使用注意事项	8
3.	产品安装		10
	3. 1	环境考虑因素	10
		3.1.1 洗择逆变器的位置	10
		3.1.2 其他环境因素	10
	3.2	2 产品的搬运	11
	3.3	9 安装逆变器	12
		3.3.1 墙壁安装	13
		3.3.2 支架安装	14
	3.4	电气连接	17
		3.4.1 接地	18
		3.4.2 连接变频器的PV侧	20
		3.4.3 连接逆变器的电网侧	23
4.	通信与监	;测	26
	4.1	. COM连接器装配	26
	4.2	? 逆变器监控连接	28
		4.2.1 单个逆变器的监控	28
		4.2.2 多个逆变器的监控	29
	4.3	9 电表连接	30
5.	调试 …		33
	5.1	选择合适的电网标准	33
		5.1.1 验证安装国家的电网标准	33
	5.2	更改电网标准	33
		5.2.1 设置电网标准的步骤	33
	5.3	设置自定义电网标准	34
	5.4	初步检查	35
		5.4.1 直流连接	35
		5.4.2 交流连接	35
		5.4.3 直流配置	35
6.	正常操作		36
	6.1	启动程序	36
	6.2	关机程序	36

7. 一般操作			37
7.1 主菜	单	3	37
7.2 信息			37
7.2.	1 解锁屏幕		39
7.3 设置			39
7.3	1 设定时间	3	39
7.3	2 设置地址		39
7.4 高级	信息 - 仅限技	术人员4	60
7.4	1 报警信息	4	10
7.4	2 运行信息	4	60
7.4	3版本号 …	4	1
7.4	4 日发电量	4	1
7.4	5 月发电量	4	1
7.4	6 年发电量	4	12
7.4	7 每日记录	4	12
7.4	8 通讯数据	4	12
7.4	9 警告信息	4	12
7.5 高级	设置 - 仅限技	术人员4	13
7.5	1选择国家标	准	13
7.5	2 开机/关机	4	14
7.5	3 清除发电量	4	4
7.5	4 重置密码	4	15
7.5	5 功率控制	4	15
7.5	6 校准总发电	,量	15
7.6 AFCI	功能	4	6
7.6	1 开启AFCI艾	〕能	6
7.6	2 电弧故障	4	6
8. 维修保养			17
8.1 抗PI	D功能	4	17
8.2 风扇	维护	4	8
9. 故障处理 …			9
10. 产品规格 ·			<i>i</i> 1

1.介绍

1.1 产品描述

GCI三相五代组串式并网逆变器可以将光伏电池板产生的直流电能转换成交流电,并将其接入电网。 GCI三相五代组串式逆变器含有以下型号:

G5-GC50K-PRO, G5-GC60K-PRO, G5-GC60K-HV-PRO, G5-GC70K-HV-PRO

1.2 包装清单

逆变器包装清单包括如下配件,请收到逆变器时检查配件是否齐全:

请在使用前仔细阅读此说明书,并对说明书妥善保管,以便日后参照。

1.3 存储

如果未立即安装逆变器,则存储说明和环境条件如下:

- 逆变器需要使用原包装箱打包,保留干燥剂,并用胶带密封。
- 将逆变器存放在清洁干燥的地方,避免灰尘和污垢。储存温度必须介于-40~70℃之间, 相对湿度应介于0~100%之间,无冷凝。
- 一个托盘上不能堆叠超过两个逆变器,上下堆叠不能超过两个托盘。
- 包装箱远离腐蚀性物质,以免损坏逆变器外壳。
- 储存期间需要定期检查,如果包装箱有破损(潮湿,虫害等),请立即重新包装逆变器。
- 逆变器需存放在平坦坚硬的表面上 不可倾斜或倒置。
- 存放超过100天后,必须在安装前检查逆变器是否有物理损坏。
 如果逆变器存放时间超过1年,需要经过专业人员的全面检查和测试投入运行和使用。
- 长时间不使用后重新启动需要检查设备,并且在某些情况下,需要清除设备内部已经沉淀的氧化和灰尘。

注意:

1. 不正确的使用可能导致触电或灼烧的危险。

警告:

- 2. 在安装和维护的过程中,必须严格按照本说明书上的指示进行操作。
- 3. 请在使用前仔细阅读本说明书,并将其妥善保管,以便日后参照。

2.1 安全标示

安全标识是用来强调潜在安全隐患和重要安全信息的,本说明书中使用的安全标识如下:

警告标识是重要安全提示,如果不能正确遵循,可能导致重伤甚至死亡。 安全提示:该安全提示为逆变器操作安全指示,如果不能正确遵循,可能造成损害 或破坏逆变器。

<mark>安全提示:</mark> 该安全提示为电击警告安全指示,如果不能正确遵循,可能导致人员触电。

存在电击危险!禁止拆卸外壳!需由具备服务资质的电工进行检修。

<mark>高温危险:</mark> 逆变器表面温度最高可达到75℃,在逆变器工作时请避免与其表面接触,否则会 造成灼伤。

2.2 一般安全说明

警告:

请勿将光伏组串的正负极接地,将会导致逆变器受到严重的损害。

<mark>警告:</mark> 逆变器的电气安装必须符合地方和国家规定的安全操作标准。

<mark>警告:</mark> 为了避免潜在的火灾风险,逆变器的交流输出需要安装过流保护装置。.

<mark>电击危险:</mark> 存在电击危险!禁止拆卸外壳!请具备服务资质的电工进行检修。

电击危险: 光伏组件(太阳能板)暴露在阳光下时,其输出端会产生直流电压。

电击危险: 断开逆变器

断开逆变器输入输出后,残留在逆变器储能电容中的能量仍可能造成人员触电。关闭所有 供电电源5分钟后,方可拆下上盖。非服务技术员,如果擅自拆除逆变器,保修将失效。

高温危险:

逆变器表面温度可高达75℃。为了避免灼伤的风险,当逆变器运行时,请不要接触逆变器 表面。另外,请将逆变器安装在儿童不能触碰到的地方。

2.3 使用注意事项

逆变器是按照相关安全规定,并慎重考虑终端用户需求设计生产的。所以在安装使用逆变器的过程中,必须按照以下要求进行:

1.逆变器安装必须是稳固的;

- 2.逆变器必须安装到一个接地良好的交流电网中;
- 3.电气安装必须符合所有适用的法规和标准;
- 4.逆变器安装必须按照本手册执行;
- 5.逆变器安装必须按照正确的技术规格执行;
- 6.启动逆变器时,应先打开电网交流开关,关闭逆变器时,必须关闭电网交流开关。

7.逆变器仅供工业场景使用。

3.1环境考虑因素

3.1.1选择逆变器的位置

选择逆变器的位置时,请考虑以下事项:

警告:火患风险
 尽管经过安全的生产与组装,电气设备仍然可能导致火灾:
 ·不要把逆变器安装在充满高度可燃性物质或气体的地方。
 ·不要把逆变器安装在可能有爆炸危险的环境中。

- 逆变器散热片温度可达75℃。
- 逆变器的设计工作环境温度范围为-25~60℃。
- 如果现场安装了多台逆变器,则每台逆变器与所有其他安装设备之间应保持至少500mm的间隙。
 逆变器底部至少应为800mm在地面或地板之上(见图3.1)。
- 如果逆变器要安装在狭窄的空间内,必须通风良好。

注意: 逆变器附近不应存储或放置任何物品。

3.1.1.1 正确和错误安装的示例

3.1.2 其他环境因素

3.1.2.1 查阅技术数据有关其他环境条件,请参阅规格部分(第10节)(防护等级,温度,湿度,海拔高度等)。

3.1.2.2 墙面或支架安装 逆变器应垂直安装或向后15度。 3.1.2.3 避免阳光直射避免在阳光直射的地方安装逆变器。直接暴露在阳光下可能会导致:逆变器温度升高功率输出限制(由此导致系统发电量减少)。

3.1.2.4 空气循环 请始终确保逆变器周围通风良好。

3.1.2.5 易燃物质 请勿安装在易燃物附近。请与这些物品保持至少3米的距离。

3.2 产品的搬运

请查看以下有关搬运逆变器的说明:

1. 下面的红色圆圈表示产品包装上的镂空。以便于搬运逆变器纸箱(参见图3.3)。

2. 需要两个人从纸箱中取出逆变器。可以参考图示扶抬区将逆变器从纸箱中取出。(参见图3.4)。

3.3 安装逆变器

逆变器可以安装在墙壁或金属支架上。图3.5为背挂板尺寸。

3.3.1 墙壁安装

参见图3.6和图3.7逆变器应垂直安装。

逆变器的安装步骤如下:

1. 确保背挂板水平,做好标记,按标记钻孔。

2. 根据膨胀螺栓(M10*90)的孔径选择合适的钻头垂直于墙壁打孔,深度不小于90mm。

3. 用安装螺栓固定好背挂板。

4. 抬起逆变器并将其挂在支架上,然后向下滑动以确保它们完美匹配。

5. 使用包装中的螺钉将逆变器固定到背挂板上。

3.产品安装

3.3.2 支架安装

安装到支架的步骤如下:

- 1. 选择逆变器的位置
- ●本逆变器防护等级为IP66,在室外和室内均可安装。
- 壳体和散热器的温度会很高,请勿将逆变器安装在容易触碰到的位置。
- 请勿将逆变器安装在易燃易爆材料附近。

2. 安装角度

请垂直安装逆变器。如果逆变器不能垂直安装,可以从垂直方向向后倾斜15度。

3. 安装背挂板

1. 从包装中取出背挂板和紧固螺栓。根据背挂板的孔位标记孔的位置,钻孔。

2. 钻出标记的孔。建议在孔处涂防腐蚀涂料以防腐蚀。

3.产品安装

3. 将背挂板与孔对齐,将六角螺栓(M10X40)穿过背挂板插入孔中。使用随箱配备的螺栓固定在 金属框架上。将螺母拧紧至36FT-LB(35NM)。

4. 将逆变器提升到支架上方,然后向下滑动以确保它们完美匹配。

3.4 电气连接

逆变器设计采用PV式快速连接端子。在直流侧电气连接时无需打开顶盖。 位于逆变器底部的标签如下表3.1所述。所有电气连接均适用于当地或国家标准。

部件	连接	线缆尺寸	扭力
直流终端	光伏组串	4–6mm²	NA
接地终端	交流接地	25-50mm ²	5-6Nm
电网终端	电网	35-70mm²	10-20Nm
16Pin COM端口	通讯线缆	0.75-3mm ²	0.4-0.6Nm
4Pin COM端口	数据采集器	NA	NA

逆变器的电气连接必须遵循以下步骤:

1. 关闭电网供电断路器

2. 关闭直流断路器

3. 逆变器交流侧接入电网

4. 将光伏组件接入逆变器

3.产品安装

3.4.1 接地

为了有效的保护逆变器,必须同时采用两种接地方式。 需确保交流接地线和外部接地端子均可靠接地。(请参考3.4.3节) 连接外部接地端子。

要连接散热器上的接地端子,请按照以下步骤操作:

1. 准备接地线缆: 建议使用室外铜芯线缆。 接地线径至少为火线线径的一半。 2. 准备OT端子: M10。

对于并联的多个逆变器,所有逆变器应连接到同一接地点,以确保接地线等电位连接。

3. 将接地线缆绝缘层剥去合适的长度(见图3.15)。

4. 将剥开的线缆插入OT端子压接区域,然后使用液压夹将端子压接到线缆上(参见图3.16)。

5. 从散热器接地点上卸下螺丝。

6. 将接地线连接到散热器上的接地点,并拧紧接地螺栓,扭矩为5-6Nm(见图3.17)。

3.产品安装

3.4.2 连接逆变器的PV侧

重要:

警告:

在连接逆变器之前,请确保光伏阵列开路,电压在逆变器的极限范围内。 否则,逆变器可能会被损坏。

<mark>警告:</mark> 请勿将光伏组串正极或负极接地,否则会对逆变器造成严重损害。

请确保光伏组串正负极与逆变器对应标识正确连接。

有关直流连接的线缆尺寸,请参见表3.1。表中线缆默认为铜线。 组装直流连接器的步骤如下:

1. 剥去直流线缆约7毫米, 拆下连接器盖螺母。(见图3.18)

2. 将线缆插入端子螺母和金属端子。(见图3.19)

3. 使用专用压线钳将金属端子压接到线缆上。(见图3.20)

4. 将金属连接器插入连接器顶部,并以3-4 Nm的扭矩拧紧螺母(见图3.21)。

5.用万用表测量直流输入的PV电压,验证直流输入线缆的极性(见图3.22),确保每串电压在逆变器运行 范围内。将直流连接器与逆变器连接,直至听到轻微的咔哒声,表示连接成功。(见图3.23)

/ 나는 //년 그년 프네	导线横截面积	(mm²)	代他办公范围 (mm)
过	范围	推荐值	场现外在池甸(11111)
行业通用的光伏线缆 (型号: PV1-F)	4.0~6.0 (12~10AWG)	4.0 (12AWG)	5.5~9.0

警告:
当直流线缆出现反接或者逆变器故障导致不能正常工作时,禁止直接关断直流开关, 否则可能会产生直流电弧,导致逆变器损坏,甚至起火。
正确操作如下:
*使用钳流表测量直流组串电流。
*如果大于0.5A,请等待光照减弱直到电流小于0.5A。
*只有在电流小于0.5A后,才能断开直流开关并拔下直流组串。
*为彻底排除故障可能,断开直流开关后请同步拔掉直流组串,避免因第二天持续的PV能量引起的次生故障。
任何因违规操作导致的逆变器损坏将不包括在质保范围内。

接入MPPT的光伏组件要求:

- 所有光伏组件需为相同规格的组件。
- 每路MPPT的所有光伏组件的倾斜角及朝向需相同。
- 即使在最冷的预期温度下,光伏阵列的开路电压也绝不能超过逆变器的最大输入电压。
- (有关输入电流和电压要求,请参见第10节"产品规格")

3.4.2.1 直流连接高压危险通知

警告: 电击危险!

警告:

请勿触摸带电的直流导线。当PV模块暴露在光线下时会出现高电压,会有因接触直流导体而导致触电死亡的风险! 请按照本手册中的说明将光伏模块的直流线缆连接到逆变器。

因过电压而会对逆变器造成潜在损害!

光伏模块的直流输入电压不得超过逆变器的最大额定值。(详见第10节"规格") 在将直流线缆连接到逆变器之前,请检查光伏组串的极性和开路电压。 在将直流线缆连接到逆变器之前,请确认正确的线缆长度和电压范围。

3.4.3 连接逆变器的电网侧

警告: 必须在逆变器和电网之间使用过流保护装置。

1. 将三(3) 个交流线缆连接到标有"L1", "L2"和"L3"的三(3) 个交流端子。 请参阅本地代码和电压降表,以确定合适的电线尺寸和类型。

2. 将接地导线连接到标有"PE"的端子(保护接地,接地端子)。

交流侧的过流保护装置(OCPD)

注意:

为了保护逆变器的交流连接线,我们建议安装一个过流和漏电保护装置,其特性如表3.2所示:

如果交流线缆选用铝线,需加装铜铝转接端子。

逆变器	额定电压(V)	额定输出电流(A)	交流过流保护装置 (A)		
G5-GC50K-PRO	220/380	76.0	100		
G5-GC60K-PRO	220/380	91.2	125		
G5-GC60K-HV-PRO	480	72.2	100		
G5-GC70K-HV-PRO	480	84.2	100		
表3.2 额定电网过电流规格					

3.4.3.1 接线程序

使用M10压接端子连接逆变器的交流端子。

线缆规格		铜芯线缆
	范围	10~70
守线傾截॥积(mm)	推荐值	35
(岩)(石)(石)	范围	37~44
线现外佺 (mm)	推荐值	40

组装交流电网终端的步骤如下:

1. 将交流线缆绝缘护套的末端剥去约300mm,然后剥去每根导线的末端(如图3.25所示)

注意:

S2(绝缘剥离长度)比S1(OT线缆端子压接区域)长2mm-3mm。

 剥去线缆的绝缘层经过OT端子的线缆压接区域,然后使用液压压接工具压接端子。 端子的压接部分必须用热缩管或绝缘胶带绝缘。

注意: 如果选用铝制线缆则需要使用铜铝转接接线端子以避免铜排和铝制线缆直接接触 (铜铝转接头根据选用电缆自行配置)。

- 3. 断开交流断路器,确保其不会意外关闭。
- 4. 拆下逆变器接线盒上的4个螺丝, 然后拆下交流接线端盖。
- 5. 将线缆穿过螺母,护套和交流端子盖。使用套筒扳手依次将线缆连接到交流接线盒。 拧紧接线盒上的螺钉。扭矩为10~20Nm。

4. 通讯与监测

4.1 COM连接器装配

逆变器上有2个通信端口。一个是4芯COM端口,另一个是8芯COM端口。 4芯COM端口用于连接数据采集棒(详情请参阅锦浪数据采集棒手册)。 8芯COM端口用于多逆变器RS-485菊花链连接/逻辑接口连接/电表通讯接口。

逆变器组件将包括一个8芯COM连接器,用于该8芯连接器COM端口。 针脚定义如下所示。面对接头,针脚1位于左侧第一排的。其余极性如下图所示。

以下是8芯COM连接器的装配图。

A-主电缆(直径:4-6mm) B-锁紧螺母(扭矩:3.5-4N.m) C-套筒 D-COM线(尺寸:0.75-3mm ,剥离长度:10-12mm) E-电动锁紧螺钉(扭矩:0.4-0.6N.m) F-连接器 连接步骤:

1. 将主电缆穿过锁紧螺母和套管。

2. 剥下COM导线并插入相应的引脚端子。然后拧紧销端子的锁紧螺钉。

3. 将套筒推到接头上,并拧紧套筒端部的锁紧螺母。

4. 将接头连接到变频器底部的8芯COM端口。

断开步骤:

1. 按下连接器两侧的按钮, 然后拉动连接器以断开COM端口。

4. 通讯与监测

2. 使用解锁工具插入套筒上的凹槽并拉动套筒以断开从接头上拆下。

4.2 逆变器监控连接

锦浪可以提供可选配件,如一对一数据采集棒,包括WiFi棒、GPRS棒和LAN棒,用于监控 单个逆变器或一对多个逆变器数据记录盒,包括WiFi盒和GPRS盒,用于监控多个逆变器。 详情请参阅相应手册。

4.2.1 单个逆变器的监控

每个逆变器可以连接一个一对一的数据采集棒进行远程监控。 数据采集棒应直接连接到机器底部的4针COM端口逆变器。 这是一个简单的即插即用设计与快速安装时间。细节和其他配置过程请参考数据采集棒手册。

4.2.2多个逆变器的监控

当多个逆变器需要同时运行菊花链通信时,针脚1/2和针脚4/5可以使用8芯COM端口中的一个。

总线RS485电缆可接入一对多数据记录盒或任何兼容设备第三方监控设备、PPC或工厂SCADA。

4. 通讯与监测

4.3 电表连接

逆变器可与三相智能电表配合工作,实现输出电源管理功能和/或24小时消耗监测功能。 8芯COM端口的针脚7/8用于电表RS485通信。

逆变器 N

逆变器 PE

L1 L2 L3 N PE 负载

图4.11 外部CT型电表-"电网电表"

0

a/2000 0 0/2

电网 PE

CT 指向 → 电网

5.1 选择合适的电网标准

5.1.1 验证安装国家的电网标准

逆变器在全球范围内使用,并具有预置标准,可在任何电网上运行。虽然电网标准是由工厂制定的, 但在调试前,电网标准必须经过安装当地电网的验证。可以访问用于更改电网标准或创建自定义标准的 菜单,如下面的第7.5.1节所述。

5.2 更改电网标准

5.2.1 设置电网标准的步骤

注意: 此操作仅适用于维修技术人员。 在出厂前,逆变器已根据当地电网标准进行预设置。

注意:

注意:

为确保逆变器满足并网标准,用户在使用前需检查逆变器国家标准设置, 在中国大陆地区使用的逆变器必须确保国家标准设置为CQC。

1. 从显示屏的主屏幕中,选择ENTER。有4个子菜单选项,使用向上/向下箭头突出显示高级设置。 按ENTER键进行选择。

2. 屏幕将显示需要密码。默认密码为"0010",按DOWN键移动光标,按UP键选择数字。

3. 使用向上/向下键突出显示"选择国家标准"选项。按Enter键进行选择。

4. 选择安装国家/地区的电网标准。

按向上或向下键选择标准。按ENTER键确认设置。按ESC键取消更改并返回上一菜单。

5.3 设置自定义电网标准

有关为User-Def菜单选项创建自定义电网 配置的过程,请参阅第7.5节"高级设置"。

5.4 初步检查

交流和直流电压测量必须由具有专业资格的人员进行。

5.4.1 直流连接

验证直流连接。

1. 目视检查可能未插入终端的任何杂散线。

警告:

2. 轻轻拉动每根直流线缆,确保线缆紧固到位。

5.4.2 交流连接

验证交流连接。

- 1. 目视检查可能未插入终端的任何杂散线。
- 2. 轻轻拉动每根交流线缆,确保线缆紧固到位。

5.4.3 直流配置

检测组串极性,确保极性正确。 测量组串开路电压,确保在极限低温条件下组串的开路电压不超过逆变器的最大输入电压。

6. 启动及关闭

6.1 启动程序

- 要启动逆变器,必须按照所列的顺序执行以下步骤。
- 1. 闭合交流断路器。
- 2. 将逆变器上的直流开关置于"ON"的位置。如果光伏组串(DC)电压高于逆变器的启动电压, 逆变器将开始启动。红色POWER灯和液晶屏将持续点亮。
- 3. GCI逆变器由直流侧供电。当逆变器检测到启动和工作范围内的直流电源时,逆变器将亮起。 开启后,逆变器将检查内部参数,检测和监控交流电压,频率和供电网的稳定性。 在此期间,绿色OPERATION灯将闪烁,LCD屏幕将显示等待中。 这表示逆变器准备并网输送交流电。
- 4. 在本地强制延迟(符合IEEE-1547标准的逆变器300秒)后,逆变器将开始正常运行。 绿色OPERATION灯将持续亮起,LCD屏幕将显示正常运行。

逆变器的表面温度最高可达75℃(167°F)。 为避免灼伤危险,请勿在逆变器处于运行模式时触摸表面。 此外,逆变器必须安装在儿童接触不到的地方。

6.2 关机程序

要停止逆变器,必须按照所列的顺序执行以下步骤。

1. 逆变器控制关机操作, 然后再断交流断路器。

警告:

警告:

- 2. 等待大约30秒(在此期间,交流侧电容器放电)。
- 如果逆变器的直流电压高于启动阈值,红色POWER灯将亮起。断开直流开关。 3. 确认所有指示灯熄灭(约1分钟)。

虽然逆变器直流断路开关处于断开位置且所有指示灯都处于熄灭状态,但在断开直流电源后 操作员必须等待5分钟才能打开逆变器外壳。 在正常操作中,LCD屏幕交替显示逆变器电源和运行状态(参见图7.1)。 按UP/DOWN键可以手动滚动屏幕。按ENTER键可访问主菜单。

7.1 主菜单

主菜单下有4个子菜单(参见图7.1):

- 1.信息
- 2.设置
- 3. 高级信息
- 4. 高级设置

7.2 信息

锦浪三相逆变器主菜单提供对操作数据和信息的访问。

通过从菜单中选择"信息"然后向上或向下滚动来显示信息。

显示	持续时间	说明
总直流电压: 0000.0V 总直流电流: +000.0A	10 S	总直流电压:显示输入电压总和 总直流电流:显示输入电流总和
A相电压: 000.0V A相电流: 000.0A	10 S	A相电压:显示电网A相当前电压值 A相电流:显示电网A相当前电流值
C相电压: 000.0V C相电流: 000.0A	10 S	C相电压:显示电网A相当前电压值 C相电流:显示电网A相当前电流值
运行状态: 正常运行 实时功率: 00000W	10 S	运行状态:显示逆变器当前状态 实时功率:显示当前功率
无功功率: 00000Var 视在功率: 00000VA	10 S	无功功率:显示逆变器的无功功率 视在功率:显示逆变器的视在功率
电网频率: 00.00Hz	10 S	电网频率:显示电网当前频率值
总发电量: 0000000 kwh	10 S	总发电量:总发电量
本月发电量: 0000kwh 上月发电量: 0000kwh	10 S	本月总发电量:本月总发电量 上月总发电量:上月总发电量
今日发电量: 000.0kwh 昨日发电量: 000.0kwh	10 S	今日发电量:今日已发电量 昨日发电量:昨日发电量
逆变器SN号: ********	10 S	逆变器SN号
输出功率: +00000W 输出电流: 00.0A	10 S	输出功率:显示实时输出功率值 输出电流:显示实时输出电流值
工作模式: 无 DRM号: 08	10 S	工作模式:显示当前工作模式状态 DRM号:显示DRM的工作状态
组串电流01: +00.0A 组串电流02: +00.0A 组串电流19: +00.0A 组串电流20: +00.0A	10 S	组串电流:显示每串组件的输入电流值
PV总功率: 00000W	10 S	PV总功率
	1	表 7.1 信息列表

7.2.1 解锁屏幕

液晶一分钟内无操作将自动锁屏,同时长按ESC和ENTER两键十秒解锁。如图7.2所示。

7.3 设置

选择设置选项,将显示如下子菜单:

1.设置时间 2.设置从机地址

7.3.1 设置时间

此功能用来设置时间与日期。选择此功能,液晶屏显示如下图7.3所示:

按上/下键来设置时间和日期。按ENTER键从左至右依次选择数据。 按ESC键保存设置并返回上级菜单。

7.3.2 设置从机地址

此功能用来设置跟PC机通讯的逆变器的地址。地址可以设置为从 "01" 到 "99" (如图 7.4)。GCI三相组串式逆变器 中默认地址为 "01"。

按上/下键来选择地址.按ENTER键去保存设置。 按ESC取消当前设置并返回上级菜单。

7. 一般操作

7.4 高级信息 - 仅限维护人员操作

注意:

仅限维护人员可以进行此操作。 进入菜单"高级信息"和"高级设置"(需要密码)

从主菜单里选择高级信息,液晶屏将显示如下信息:

默认密码是"0010"。请按"down"键来移动光标,按"up"键来选择数字。输对密码进入主菜单,液晶屏会显示如下信息:

1.报警信息 2.运行信息 3.版本号 4.日发电量明细 5.月发电量明细
 7.年发电量明细 7.工作日志 8.DSP通信数据 9.警示信息

通过按上/下键来滚动屏幕上的信息.按ENTER键进入子菜单。 按ESC键返回主菜单。

7.4.1 报警信息

显示最近600条报警信息 (如图 7.6)。通过上下键来滚动屏幕上的信息。按ESC键返回上级主菜单。 T表示时间信息,某月-某日,几点:几分。D表示故障数值,用于厂家分析故障。

7.4.2 运行信息

此功能是便于维护人员获取运行信息,例如内部温度,标准编号等。 可以按UP/DOWN键来滚动屏幕。

7.4.3版本号

本屏幕显示机型版本(见图 7.7)仅供专业人员可见。

型号:08	
图7.7 机型版本	

7.4.4 日发电量明细

本功能是确认选择日的能量。

按 DOWN 键移动光标到天、月、年,按UP键来更改数字。确定时间点后按Enter。

按UP/DOWN 键来移动时间。

7.4.5月发电量明细

本功能是确认选择月的能量。

7. 一般操作

7.4.6 年发电量明细

本功能是确认选择年的能量。

7.4.7 工作日志

本液晶屏显示的是更改设置的历史数据。(仅供维护人员)

7.4.8 DSP 通信数据

本液晶屏显示的是逆变器内部数据。(仅供维护人员)

7.4.9 警示信息

本液晶屏显示的是逆变器警示信息。(仅供维护人员)

7.5 高级设置 - 仅供技术人员

仅限技术人员进行操作。 请按照7.4的操作,输入密码进入菜单。

选择主菜单的高级设置,进入如下选项:

1.选择国家标准 2.开机关机 3.清除发电量 4.重置密码 5.功率控制 6.校准总发电量

7.5.1 选择国家标准

本功能是用来选择并网的相关标准 (如图 7.15)。

图7.16 用户自定义

下面是"用户自定义"的设置范围.该功能可以实现极限范围的手工更改。

为确保逆变器满足并网标准,用户在使用前需检查逆变器国家标准设置, 在中国大陆地区使用的逆变器必须确保国家标准设置为CQC。 因为设置标准导致的问题由客户自己负责。

OV-G-V1: 220374V	OV-G-F1: 50.1-65Hz
OV-G-V1-T: 0.01300S	OV-G-F1-T: 0.01300S
OV-G-V2: 220374V	OV-G-F2: 50.1-65Hz
OV-G-V2-T: 0.01300S	OV-G-F2-T: 0.01300S
UN-G-V1: 110277V	UN-G-F1: 45-59.9Hz
UN-G-V1-T: 0.01300S	UN-G-F1-T: 0.01300S
UN-G-V2: 110277V	UN-G-F2: 45-59.9Hz
UN-G-V2-T: 0.01300S	UN-G-F2-T: 0.01300S
Startup-T: 10-600S	Restore-T: 10-600S

按UP/DOWN 滚动条目. 按 ENTER 键编辑高亮条目.再按UP/DOWN键更改设置, 按ENTER键保存设置。按ESC键撤销更改并返回上一级菜单。

7.5.2 开机关机

此功能使用来开始或者停止逆变器发电(如图 7.17)。

按上下键来滚动屏幕上的信息。按ENTER键保存。 按ESC键返回上一级菜单。

7.5.3 清除发电量

清除能量可以重置逆变器的历史数据。

这两项功能仅限于维护人员。错误的操作可能会导致逆变器无法正常工作。

7.5.4 重置密码

此功能是为"高级信息"以及"高级设置"设置新密码(如图7.18)。

正确输入密码进入后设置新密码。按DOWN键移动光标,按UP键更改数值。 按ENTER保存设置。按ESC键返回上级菜单。

7.5.5 功率控制

可以通过功率设置按钮来设置有功功率跟无功功率。

- 子菜单有5项内容:
- 1. 有功功率设置 2. 功率因数设置 3. 有功带重启自设
- 4. 无功带重启自设 5. 设置功率因数曲线 6. 最大输出功率选择

此功能仅限维护人员操作。错误操作可能导致逆变器无法达到最大功率。

7.5.6 校准总发电量

维护保养或者移位可能会导致清除或者总数值变化。有此功能可以改回之前的数值。 如果监测网站用的也是这个数据,将同步自动设置(图 7.19)。

确认=<ENT>退出=<ESC> 总发电量:000000kWh 图7.19校准总发电量

按DOWN 键移动光标,按UP键调整数值。按ENTER键保存设置。按ESC键返回上一级菜单。

7. 一般操作

7.6 AFCI功能

GCI逆变器有内置AFCI功能,可以检测到直流电路的电弧故障并关闭逆变器以防止可能引发的火灾。

7.6.1 开启AFCI功能

AFCI功能可以如下方式开启:

路径:高级设置-输入密码0010-特殊功能设置-AFCI设置-AFCI开关-开启

图7.21 电弧故障

安装人员需要彻底检查直流电路,以确保所有的线缆都正确连接并固定。

一旦直流电路的故障修复后并且所有配置都确认OK,长按"ESC"3秒钟并等待逆变器重新启动。

GCI三相组串式逆变器不需要使用者进行定期保养。然而,杂物或灰尘如果会影响逆变器的散热性能。 因此,可用软刷子进行清洁。

在设备运行时不要触摸逆变器,壳体部分区域温度太高,可能引起烫伤。 停机一段时间后,待逆变器表面温度降低后,再进行保养和清洁。

若LCD液晶显示屏和LED指示灯表面太脏而不方便阅读,可用一湿布对之进行清理。

警告:

不要用任何溶剂、磨具磨料或者腐蚀性的材料进行清洁。

8.1 抗PID功能

GCI三相五代组串式并网逆变器集成了可选的抗PID模块,可以在夜间恢复PID效应,从而保护光伏组件免受衰减。

Anti-PID模块在夜间修复PV模型的PID效应。操作时,逆变器LCD屏幕显示"PID修复"信息,红灯亮。 应用交流时,Anti-PID功能始终为ON。

如果需要维护并关闭交流开关可以禁用Anti-PID功能。

如果您需要在夜间维护逆变器,请先关闭交流开关,然后关闭直流开关,等待5分钟后 再进行其他操作。

8.2 风扇维护

如果风扇不能正常工作,逆变器将无法有效冷却。

它可能会影响逆变器的有效运行。

因此,有必要按如下方式清洁或更换损坏的风扇<mark>:</mark>

1. 关闭逆变器LCD上的"开机/关机"开关。

注意:

- 2. 断开交流电源。
- 3. 将直流开关转到"OFF"位置。
- 4. 至少等待15分钟。

5. 卸下风扇板上的8个螺钉,然后慢慢拉出风扇组合件。

6. 小心地断开风扇连接器, 然后取出风扇。

7. 清洁或更换风扇。将风扇装配在机架上。

8. 连接电线并重新安装风扇组件。重启逆变器。

GCI三相组串式逆变器是按照国家标准设计的,符合安规要求和电磁兼容要求。为了保证逆变器可以稳定可靠的运行,GCI三相组串式逆变器在出厂前经过若干道严格测试。

如果出现故障,液晶显示屏会显示报警信息。在这种情况之下,逆变器可能会停止发电。 其故障的情景和可能的原因如表9.1:

报警信息	故障描述	解决方案	
无功率	LCD显示无功率	1.检查逆变器输入侧连接 2.检查直流输入电压 (>120V) 3.检查 PV+/- 是否接反	
LCD 一直显示初始化	无法启动	1.重新启动逆变器 2.故障重复发生请联系厂家	
电网过压	电网过压	1.交流线缆阻抗过高,更换大尺寸交流线缆 2.在电网公司允许的条件下调整保护极限值	
电网欠压	电网欠压		
电网过频	电网频率过高	1.在电气公司允许的情况下通过用户自定义	
电网欠频	电网频率过低	功能调整保护极限值	
电网阻抗过大	电网阻抗高		
无电网	无电网	1.检查断路器,检查交流端子的连接 2.检查逆变器端子上的电压	
直流过压	直流电压过高	1.减少组件数量	
直流母线过压	直流母线电压过高	1.检查输入电压是否超过逆变器最大电压 2.联系厂家	
直流母线欠压	直流母线电压过低		
电网扰动	电网干扰	1.重启逆变器 2.联系厂家	
电网过流	电网过电流		
IGBT过流	IGBT过电流		
电网电流跟踪故障	电网电流跟踪失效	1 手口溢亦限式来研究它准 1 日	
电网电流采样异常	电网电流采样失效	1.里后ሥ受器或者联系安装人页	
过温保护	温度过高	1.检查逆变器周围的通风情况 2.检查炎热天气时逆变器是否被阳光直射	
DSP初始化保护	系统故障保护		
DSP_B 保护	主DSP与从DSP之间的一般故障	1.重启逆变器或者联系安装人员	
12V欠压保护	12V 电源故障保护]	
PV绝缘保护	PV绝缘保护	1.移除所有直流输入,逐个重连并重启逆变器 2.识别引起故障的组串并检查该组串是否绝缘	
漏电流保护	电网侧电流泄露保护	1.检查交流跟直流连接 2.检查逆变器线缆连接	
继电流检测保护	继电器故障保护	1.重启逆变器或者联系安装人员	
直流分量过大	直流输入过电流	1.重启逆变器或者联系安装人员	
直流反接	直流端子反接	1.先断开交流,再分断直流开关,等待五分钟后 拔下反接组串,确认安全后,重新压接直流端子, 确认极性正确后,然后接入逆变器	

报警信息	故障描述	解决方案
逆变器液晶不亮 但是直流有电	可能是逆变器内部损坏	 禁止直接关闭直流开关,否则会导致逆变器损坏 请等待光照减弱直到组串电流小于0.5A之后再关闭 直流开关并移除组串(可通过钳流表测量) 3.任何因违规操作导致的逆变器损坏将不包括在质保 范围内 注意: 当直流组串内电流大于0.5A时,不可操作直流开关
AFCI自检测 (含有AFCI模块的机型)	AFCI模块自检测错误	1. 重启逆变器或者联系工程师
AFCI保护 (含有AFCI模块的机型)	在直流电路中检测电弧	1. 检查逆变器连接,看是否存在电弧然后重启逆变器

表9.1 故障状况

如果逆变器显示表9.1中的任何警报信息,请关闭逆变器(参见6.2节停止逆变器),等待5分钟之后重新启动(参见6.1节开启逆变器)。如果报警状况未被 清除,请联系您当地的经销商或服务中心。请在联系我们之前,准备好下列 资料。

- 1. 逆变器产品序列号;
- 2. 逆变器的分销商或经销商(如有);
- 3. 安装日期;
- 4.问题描述(即液晶显示器所显示的报警信息和状态指示灯的显示状态,其它从信息子菜单 (参见7.2节)获得的读数也会有帮助);
- 5. 太阳能光伏阵列配置的系统设计(如:太阳能板的数量和容量,线串的数量等);
- 6. 您的详细联系方式。

产品型号	G5-GC50K-PRO
电压 (Volts)	1100
额定输入电压 (Volts)	600
启动电压 (Volts)	195
MPPT 电压范围 (Volts)	180-1000
最大输入电流 (Amps)	5*36
最大输入短路电流 (Amps)	5*50
MPPT 数量/最大输入路数	5/10
额定输出功率 (Watts)	50000
最大视在功率 (VA)	55000
最大有功功率 (cosφ=1) (Watts)	55000
额定电网电压 (Volts)	3/N/PE, 220/380
额定电网输出电流 (Amps)	76.0
最大输出电流 (Amps)	83.6
输出功率因素	>0.99(0.8超前0.8滞后)
总电流谐波畸变率 (额定功率下)	<3%
额定电网频率 (Hertz)	50
电网频率范围 (Hertz)	45-55
最大效率	98.7%
中国效率	98.1%
尺寸	691W*578H*338D (mm)
重量	53.7kg
拓扑	无变压器
自耗电	<1W (夜间)
工作环境温度	-25℃~60℃
防护等级	IP66
噪音{典型的}	< 55 dB (A)
冷却方式	智能冗余风冷
最高工作海拔	4000米
设计工作年限	>20年
并网标准	NB/T32004
安规/EMC标准	IEC 62109-1/-2,IEC 62116,IEC 61000-6-1/-2/-3/-4
直流端口	MC4连接器
交流端口	OT 端子
显示屏	LCD, 2×20 Z
通讯方式	RS485/USB, GPRS(选配)
质保期	5年(可延保至20年)
夜间无功补偿	选配

产品型号	G5-GC60K-PRO
电压 (Volts)	1100
额定输入电压 (Volts)	600
启动电压 (Volts)	195
MPPT 电压范围 (Volts)	180-1000
最大输入电流 (Amps)	6*36
最大输入短路电流 (Amps)	6*50
MPPT 数量/最大输入路数	6/12
额定输出功率 (Watts)	60000
最大视在功率 (VA)	66000
最大有功功率 (cosφ=1) (Watts)	66000
额定电网电压 (Volts)	3/N/PE, 220/380
额定电网输出电流 (Amps)	91.2
最大输出电流 (Amps)	100.3
输出功率因素	>0.99(0.8超前0.8滞后)
总电流谐波畸变率 (额定功率下)	<3%
额定电网频率 (Hertz)	50
电网频率范围 (Hertz)	45-55
最大效率	98.7%
中国效率	98.1%
尺寸	691W*578H*338D (mm)
重量	53.7kg
拓扑	无变压器
自耗电	<1W (夜间)
工作环境温度	-25℃~60℃
防护等级	IP66
噪音{典型的}	< 55 dB (A)
冷却方式	智能冗余风冷
最高工作海拔	4000米
设计工作年限	>20年
并网标准	NB/T32004
安规/EMC标准	IEC 62109-1/-2,IEC 62116,IEC 61000-6-1/-2/-3/-4
直流端口	MC4连接器
交流端口	OT 端子
显示屏	LCD, 2×20 Z
通讯方式	RS485/USB, GPRS(选配)
质保期	5年(可延保至20年)
夜间无功补偿	选配

产品型号	G5-GC60K-HV-PRO
电压 (Volts)	1100
额定输入电压 (Volts)	720
启动电压 (Volts)	195
MPPT 电压范围 (Volts)	180-1000
最大输入电流 (Amps)	6*36
最大输入短路电流 (Amps)	6*50
MPPT 数量/最大输入路数	6/12
额定输出功率 (Watts)	60000
最大视在功率 (VA)	66000
最大有功功率 (cosφ=1) (Watts)	66000
额定电网电压 (Volts)	3/PE, 480
额定电网输出电流 (Amps)	72.2
最大输出电流 (Amps)	79.4
输出功率因素	>0.99(0.8超前0.8滞后)
总电流谐波畸变率 (额定功率下)	<3%
额定电网频率 (Hertz)	50
电网频率范围 (Hertz)	45-55
最大效率	98.7%
中国效率	98.3%
尺寸	691W*578H*338D (mm)
重量	53.7kg
拓扑	无变压器
自耗电	<1W (夜间)
工作环境温度	-25°C~60°C
防护等级	IP66
噪音{典型的}	< 55 dB (A)
冷却方式	智能冗余风冷
最高工作海拔	4000米
设计工作年限	>20年
并网标准	NB/T32004
安规/EMC标准	IEC 62109-1/-2,IEC 62116,IEC 61000-6-1/-2/-3/-4
直流端口	MC4连接器
交流端口	OT 端子
显示屏	LCD, 2×20 Z
通讯方式	RS485/USB, GPRS(选配)
质保期	5 年 (可延保至20年)
夜间无功补偿	选配

产品型号	G5-GC70K-HV-PRO
电压 (Volts)	1100
额定输入电压 (Volts)	720
启动电压 (Volts)	195
MPPT 电压范围 (Volts)	180-1000
最大输入电流 (Amps)	6*36
最大输入短路电流 (Amps)	6*50
MPPT 数量/最大输入路数	6/12
额定输出功率 (Watts)	70000
最大视在功率 (VA)	77000
最大有功功率 (cosφ=1) (Watts)	77000
额定电网电压 (Volts)	3/PE, 480
额定电网输出电流 (Amps)	84.2
最大输出电流 (Amps)	92.6
输出功率因素	>0.99(0.8超前0.8滞后)
总电流谐波畸变率 (额定功率下)	<3%
额定电网频率 (Hertz)	50
电网频率范围 (Hertz)	45-55
最大效率	98.7%
中国效率	98.3%
尺寸	691W*578H*338D (mm)
重量	53.7kg
拓扑	无变压器
自耗电	<1W (夜间)
工作环境温度	-25°C~60°C
防护等级	IP66
噪音{典型的}	< 55 dB (A)
冷却方式	智能冗余风冷
最高工作海拔	4000米
设计工作年限	>20年
并网标准	NB/T32004
安规/EMC标准	IEC 62109-1/-2,IEC 62116,IEC 61000-6-1/-2/-3/-4
直流端口	MC4连接器
交流端口	OT 端子
显示屏	LCD, 2×20 Z
通讯方式	RS485/USB, GPRS(选配)
质保期	5年(可延保至20年)
夜间无功补偿	选配